

How To Smart Home
With openHAB

A Key Concept Book by Othmar Kyas

1st Edition, April 2020

How To Smart Home
Published by Key Concept Press
www.keyconceptpress.com
ISBN 978-3-944980-19-5
First Edition April 2020

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval system, without permission in writing from the publisher.
Copyright © 2020 by KEY CONCEPT PRESS

http://www.keyconceptpress.com

Disclaimer
Every effort has been made to make this book as accurate as possible. However, there may be
typographical and or content errors. Therefore, this book should serve only as a general guide and
not as the ultimate source of subject information. This book contains information that might be
dated and is intended only to educate and entertain. The author and publisher shall have no
liability or responsibility to any person or entity regarding any loss or damage incurred, or alleged
to have incurred, directly or indirectly, by the information contained in this book. References to
websites in the book are provided for informational purposes only and do not constitute
endorsement of any products or services provided by these websites. Further the provided links are
subject to change, expire, or be redirected without any notice.

About the Author
Othmar Kyas is an internationally renowned expert in communication technology and strategic
marketing. He is author of sixteen books, which have been published internationally in several
languages.

Why don't we shut the whole house off for a few days and take a vacation?“ "You mean you want
to fry my eggs for me?“ "Yes." She nodded. "And dam my socks?“ "Yes." A frantic, watery-eyed
nodding. "And sweep the house?“ "Yes, yes - oh, yes!’' "But I thought that's why we bought this
house, so we wouldn't have to do anything?“ „That's just it. I feel like I don't belong here. The
house is wife and mother now, and nursemaid.

Ray Bradbury, „The Veldt“, September 1950

Disclaimer 3 ...
About the Author 4 ..

1. Read Me 9 ..
1.1.Who is this Book for? 9 ..
1.2.What You Will NOT Find 10 ...
1.3.What You WILL Find 10 ...
1.4.Safety First! 11 ...
1.5.Take no Risks 11 ...
1.6.Formatting Rules 11 ...

2. The Big Picture 12 ...
2.1.Smart Buildings and the Internet of Things (IoT) 13 ...
2.2.The Potential for Energy Conservation 13 ..
2.3.Safety Management and Assistive Domotics 17 ...
2.4.Changing the World (a bit) to the Better 17 ...
2.5.Bibliography 18 ...

3. Key Concepts 19 ..
3.1.Devices under Control 20 ..
3.2.Sensors and Actuators 21 ..
3.3.Home Automation Network (HAN) 21 ...
3.4.Controller (Smart Hubs) 27 ..
3.5.Remote Control Devices 30 ..
3.6.Cloud Services 30 ..
3.7.Bibliography 31 ...

4. Home Automation Network Protocols 32
4.1.Network Address Translation (NAT) 32 ...
4.2.Open Ports and Port Forwarding (Port Sharing) 32 ..
4.3.UPnP 33 ..
4.4.Dynamic DNS 34 ..
4.5.HTTP REST 34 ..
4.6.HTTP Server Push 35 ..
4.7.Bibliography 36 ...

5. You Don’t Know What You Don’t Know - Smarthome
Security 37 ...

5.1.Attacking the HAN 37 ...

5.2.IoT Search Engines - Shodan and friends 38 ...
5.3.Bibliography 41 ...

6. Home & Building Automation: Markets and Trends 42
6.1.Market Size and Growth 42 ..
6.2.Smart Devices & Deep Learning Technologies 43 ...
6.3.Bibliography 45 ...

7. Smart Homes for the Masses: Google, Apple, Samsung,
Amazon and more … 46 ..

7.1.Google’s Nest Labs and Google Home 46 ...
7.2.One More Thing … Apple HomeKit 47 ...
7.3.Samsung’s SmartThings 48 ..
7.4.Amazon’s Echo 48 ...

8. To Cloud or not to Cloud - This is the Question 50
9. The Project 52 ..

9.1.Overview 52 ...
9.2.Equipment and Prerequisites 55 ..

10.The Smart Home Control Center openHAB 57
10.1.openHAB Overview 57 ..
10.2.openHAB Installation: macOS and Windows 59 ...
10.3.openHABian Installation: Raspberry Pi 60 ..
10.4.First steps with openHAB 62 ..
10.5.First steps with openHAB 67 ..
10.6.Items 73 ...
10.7.Where are You? Presence Detection with openHAB 76 ...
10.8.openHAB’s Memory and Intelligence: Persistence & Rules 77
10.9.OpenHAB Upgrades 84 ..
10.10.OpenHAB Backup 84 ..
10.11.Migration from openHAB to openHABian 85 ..

11. openHAB GUI Design 86 ..
11.1.Homebuilder 88 ...

12.Integration of Multimedia 92 ...
12.1.Setting up Kodi 92 ...
12.2.Integrating Kodi with openHAB 93 ..
12.3.Controlling HiFi Components: DenonMarantz 97 ...

12.4.Creating Command Sequences (Scenes) 101 ..

13.A Little AI: openHAB Rules 102 ...
13.1.Testing it Right - Best Practice for Script Writing 103 ...
13.2.Pretty smart: A weather based alarm 104 ...
13.3.A final rule with fixed timing 112 ..

14.More iDevices 116 ..
14.1.Device Control Using Z-Wave 116 ...
14.2.Device Control Using KNX 122 ...
14.3.Configuring a KNX Heating Control System 125 ...
14.4.Bibliography 133 ...

15. Remote Smarthome Control 134 ..
16.Troubleshooting and Testing 138

16.1.Troubleshooting openHAB 139 ...
16.2.Preventive Maintenance 140 ...

17. Appendix: Industry Grade Home Infrastructure Control:
KNX 141 ...

17.1.What is KNX? 141 ...
17.2.How does KNX Work? 141 ..
17.3.The KNX Software Infrastructure: ETS 142 ...
17.4.ETS on a Mac 143 ..
17.5.ETS5 Installation 143 ..
17.6.Importing Vendor Catalogs 145 ..
17.7.ETS5 Infrastructure Configuration 145 ...
17.8.ETS5: Adding the Building Infrastructure 146 ...
17.9.ETS5: Configuring the KNX Elements 147 ...
17.10.ETS5: Connecting Infrastructure to Controls 149 ..
17.11.Notes on Configuring KNX Devices 152 ..

18.Bibliography 154..

1. Read Me
This book discusses state of the art smart home, building automation and Internet of Things
strategies and explains in detail the underlying technologies. In the second part it walks the reader
through the implementation of a typical real world home automation project using the popular and
powerful open source platform openHAB.

1.1.Who is this Book for?
You will be introduced to technology basics, planning and design principles, security and privacy
considerations as well as implementation details and testing philosophies. Expecting no specific
know-how upfront, the book is suited for both - the professional consultant as well as the technology
loving hobbyist.

After explaining the big picture and the key concepts of state of the art home and building
automation, the book will walk you through the implementation of a concrete building automation
and control project in a step-by-step manner. At the end of each project phase you should have a
real, working solution on your desk, which can be further customized and expanded as desired. No
programming skills are required as prerequisite. Scripts are explained line by line, configuration
settings step by step. Of course, if you have never written a short automation script or configured a
DSL router, at some point your learning curve will be steeper than the one of others. However,
everything you learn will be based on open standard technologies, which you will be able to utilize
in any other IT related project.

Technologies and platforms which are used in the project are:

• Wi-Fi / WLAN

• Telnet, HTTP, TCP/IP

• Z-Wave, a smart home communication standard

• KNX, a smart home communication standard

• openHAB (open Home Automation Bus), an open source building automation and Internet of
Things software platform

• macOS / Linux / openHabian/ Windows 10 / Java

Parts of the project integrate consumer electronics devices, such as audio equipment from Denon
or Marantz. However, project and instructions are designed, so that that they can easily be adapted
to other manufacturers. Be aware, however, that equipment, which is more than a few years old,
might lack the required interfaces for smart home integration at the level which is being covered in
this book, such as built in WLAN, Bluetooth, web server components, or "Wake-on-LAN"
functionality.

In addition to the professional grade, fully customizable openHAB based building control solution,
the book also covers off the shelf smart home platforms such as Apple’s HomeKit, Google’s NEST,
Google Home, Samsung’s SmartThings or Amazon’s Echo. While they are not in the centre of the
book, their technologies, design, strengths and weaknesses are discussed. Also integration options
with the described solution are outlined and explained.

In general, the technologies, design and planning approaches, test philosophies and security
considerations discussed in this book do apply to any smart home and building automation
solution.

1.2.What You Will NOT Find
This book is not a cookbook for simple plug and play type home automation solutions, which
various vendors are offering based on closed and proprietary solutions with limited functionality. It
looks at the much broader market of smart homes, building automation and Internet of Things
(IoT) and does a much deeper dive into the technology basics than the average smart home
customer might be interested in. Plug and play type solutions and how to integrate them with
professional level building automation are covered however, but it is the smaller part of a much
broader and deeper discussion of the topic.

1.3.What You WILL Find
The objective of this book is to explain and demonstrate how to build a fully customizable smart
home and building automation solution, which is capable of integrating devices and platforms from
different vendors, connecting them through meaningful and useful rules. The outcome is a
professional level, real world smart home solution, which improves quality of life while saving
energy and time. For the implementation of the sample project in this book I have selected one of
the most comprehensive and advanced open source building control platforms available today,
openHAB. Step by step you will be walked through the installation and configuration of a typical
smart home project, which you can adapt to your local requirements as you go. For the initial
phases of the project - display of outside temperature, display of astronomical data for sun an
moon, control of your music library, control of consumer electronic equipment and presence
detection based on smartphones accessing the local WiFi, you will not even need any equipment
but a computer, a smartphone and Internet access. For the later part of the project, where full
infrastructure control comes into play, you will need either add-ons to legacy lighting, room heating,
power outlet components or smart home infrastructure with control capabilities built in. You will
learn which technology and product options are available, to help you making informed decisions
at this point.

Leading up to the project in the first chapters you will learn the key concepts of building
automation, the main components and their functionality, involved network protocols as well as
security issues. Markets and trends for building automation, different architectural approaches (e.g.
cloud based versus in-house based) as well as the plug and play solutions from large vendors such as
Samsung, Apple, Amazon or Google are being discussed. At the same time as stretching from the

big picture of smart homes to the implementation of a concrete working solution, the book tries to
be as brief as possible, in order to make best use of your time.

1.4.Safety First!
For the proposed project security and availability aspects are discussed in detail and according
recommendations are being made. In chapter five we will take a closer look at what is behind the
frequent headline news about smart home door locks being hacked, or smart home cloud accounts
being compromised. In addition according measures against potential attacks are being outlined. In
the sample project described, safety and security plays a key role as well. All step by step
instructions take privacy and operational security into account and are designed accordingly. In
addition, fundamental technology design and operations principles for a secure and high
availability building control infrastructure are being discussed, providing value beyond the project
covered in this book.

1.5.Take no Risks
A last word of caution before we get started. Be careful when following the step-by-step
instructions. Almost no two PC systems, consumer electronic devices, or other electronic gear are
alike. Even when they appear to be, they actually might differ in hardware due to different
production runs, in firmware, in software or in configuration. If something goes wrong, you might
need to reinstall the operating system on your computer platform and you could lose all your data.
So set up a dedicated user for testing or experimentation or even better use a spare computer
system, unless you are absolutely sure what you are doing. As an example, using a single-board
computer platform such as Raspberry Pi - which among other platforms is also covered in this book
- costs less than 100 € and saves space and energy. So budget constraints are no more in the way for
a professional and save approach today.

1.6.Formatting Rules
For better readability, the following formatting rules are used throughout the book:

• Monospace

Computer output, code, commands, user input

• LARGE CAPS
Communication Protocols (DHCP, IP, KNX, etc.)

• Italic – medium blue
sequence of GUI commands separated by en dash (–)

• Medium blue underlined
Web addresses (URLs)

For the projects in this book I have created the user account smarthome under macOS and
Windows 10. The prompts in terminal window screenshots as well as in terminal print-outs read
accordingly.

9. The Project
9.1.Overview

Complex functionality in information technology can be explained best using an incremental
approach, starting from simple “hello-world” type of functionality to sophisticated features in
sequential steps, each of which can be tested and demonstrated individually. In software
engineering terms, this approach is referred to as development sprints. Sprints are relatively small
coding modules, which need to be designed in such a way, that they can be demonstrated
independent of other development elements, once their implementation is finished. Such sprint
demonstrations are formal project milestones, which are conducted in front of the entire
engineering team. The advantage of the sprint approach is the continuous validation of
functionality. Problems are recognized early and remain manageable. The permanent monitoring
of increasing functionality avoids surprises and keeps the fun factor high. In following this
philosophy, most design phases of our project are independent from each other and work stand
alone. However, some of the initial components build upon each other, so it does make sense to
follow the sequence up to chapter thirteen.

In the next two chapters we will start with installing and configuring the open source smart building
and Internet of Things (IoT) platform openHAB, which will serve as the home controller for the
project. The openHAB framework will also allow us to build a customized smartphone and tablet
control app in little time with no programming skills required. Later, openHAB will also be used to
run the automation rules, which we will define during the course of the project. As a first example
we will be retrieving weather condition and temperature data displaying it with our smartphone
app (Figure 9.1).

Figure 9.1 Display of weather information using the openHAB smartphone app

In chapter twelve we integrate multimedia control functionality to our smart home project. We will
set up openHAB to integrate and control the popular open source Kodi media center application.
In chapter thirteen we introduce the rule based automation capabilities of openHAB. We will use
the components, we have built so far, to put together the intelligent wake up scenario: “Wake me up
early in case it rains”. The idea is to start a morning wake up scenario 45 minutes earlier than
normal, in case of nightly rain or snowfall, to avoid the potential traffic jam. For that, we will use
our Internet weather sensor to poll the weather conditions during the night, and, once a wake up
condition is met, our scenario will start playing music. Up to that phase all you need for following
and implementing the project is a Mac, a PC or a Raspberry Pi, a WiFi network and an Internet
capable smartphone. In chapter fourteen we add wireless light and power outlet control to our
project, using the standards Z-Wave and KNX.

In the last part of the book we extend our project with functionality, which enables it to reliably
function in a real environment and in daily operation. We add the capabilities to access all control
functions from remote via the Internet and to automatically restore operation after a restart of the
controller.

With that done, our smart home control system will be capable of:

• smartphone / tablet based display of weather, temperature and astronomical data

• smartphone / tablet based control of lights, heating, power-outlets, consumer electronics devices

• smartphone / tablet based control for scenarios such as Good Morning, Welcome, Good Night,
Leaving Home

• rule based scenario execution, triggered by time, date, weather condition or temperature

• rules for scenarios such as
- empty home (empty during the day)
- vacant home (vacant for two or more days)
- warmup (activation of heating without night savings to bring up temperature in a vacant home)
- presence simulation (light activity to simulate presence)
- deactivation of all rules

• integration with other smart home platforms

• smart home remote control from outside of the house

• Automated restoration of operation after power outages or planned downtime

Using the functionality of our project as a start, a vast variety of variations and add-ons can easily
be implemented.

Figure 9.2 Main menu of the smartphone app based smarthome control screen for our project

9.2.Equipment and Prerequisites
In general you will find that in order to implement smart home controls with functions beyond
switching power outlets and lights, you need relatively new equipment. This is true for your WiFi
(WLAN) router, for the appliances and consumer electronic devices you want to control as well for
the mobile clients (smartphones and tablets) you plan to use. Fortunately, prices for all of the above
have gone down over the past years. Therefore, in many cases, you might rather want to upgrade
the equipment you have to the latest generation, than giving up functionality or spending a lot of
effort trying to integrate legacy equipment. Of course, there are always also good reasons not to
upgrade and to keep existing equipment. Everyone will have to make that decision on an individual
base.

In order to be able to follow the project in this book, you will need the following, obviously
depending on which functionality you plan to implement:

• a home network with Internet access and a WiFi/DSL router

• an iOS or Android powered smartphone or tablet

• a RaspberryPI, macOS or a Windows based computer system

• Z-Wave components (power-outlets, lighting, etc.) in case you plan to use the Z-Wave protocol

• KNX components (power-outlets, lighting, etc.) in case you plan to use the KNX protocol

• consumer electronic devices with LAN / WiFi capability built in

Alternative to Z-Wave or KNX, the usage of other building control standards for the project
described in the book is also possible, although not described in detail. The smart building and
Internet of Things platform openHAB, which we use throughout this book, supports literally all
major building control standards.

In addition to the above equipment, some familiarity with computer and network technology is
recommended. You do not have to be able to actually write code. However, if you have never heard
of IP, Telnet or HTTP, and if you have never edited a batch file (.bat) or a shell script (.sh), you will
probably have to go through a steeper learning curve than others. On the other hand, with the
thousands of good Internet tutorials just a mouse click away, there is nothing you cannot learn
within a few hours.
;-)

10.The Smart Home Control
Center openHAB

We start our project with the installation and configuration of openHAB (open Home Automation
Bus), one of the leading open source software platforms for building automation and device control.
The platform has been used for building automation and Internet of Things (IoT) projects in
residential and commercial applications around the world and is supported by a large and active
user community. Setting up and configuring the software is a bit more complex than clicking a few
buttons, however, you do not need programming skills. As a result the platform allows for building a
fully custom, professional building automation system, including smartphone apps and cloud
service for state of the art, user friendly control.

10.1. openHAB Overview
The openHAB platform consists of three major components:

• The openHAB controller, an always-on (24/7) Linux (Ubuntu, Raspbian, …), Windows or
macOS server application, which connects control devices (smartphones, tablets, panels) to smart
objects and other building automation systems. Smart objects can be building infrastructure (light
switches, power outlets etc.), consumer electronic devices, home appliances or web services. The
openHAB controller can also run automation sequences called rules.

• The second component consists of the openHAB clients. They interact with the smart objects
under control via the openHAB controller. Clients can either be a web browser, which connects
to the openHAB server or iOS and Android apps for operation on mobile phones or tablets.

• The third component is the free myopenHAB cloud service (operated by the openHAB
Foundation), which allows to access your openHAB server from away securely without having the
need of a complex VPN setup.

Through more than 250 add-on software interface modules, which in openHAB are called
bindings, the platform can interact with home automation devices from all major vendors:

Air Quality, Discovery, Binding Configuration, Thing Configuration, Channels, Full Example, AirVisual Node, AKM868,
Alarm Decoder, AllPlay, Amazon Dash Button, Amazon Echo Control, Anel NET-PwrCtrl, Asterisk, Astro, Atlona, Autelis
Pool Control, AVM FRITZ!, Belkin Wemo, BenQ Projector, BigAssFan, Bluetooth, Bosch Indego, Bose SoundTouch, Bticino,
CalDAV Command, CalDAV Personal, Cardio2e, Chamberlain MyQ , Chromecast, Cm11a (X10 controller), ComfoAir,
ConfigAdmin, CoolMasterNet, CUPS, D-Link Smart Home, Daikin, Davis, DD-WRT, Denon, Denon / Marantz,
digitalSTROM, DIYOnXBee, DMX, DSC Alarm, DSMR, eBUS, Ecobee, EcoTouch, ekey, Energenie, EnOcean, Enphase
Energy, Epson Projector, Exec, Expire, Fatek PLC, Feed, Feican, FHT, Folding@home, Freebox, FreeSWITCH, Fritz AHA,
Fritz!Box, Fritzbox (using TR064 protocol), Fronius, Frontier Silicon Radio, FS Internet Radio, FS20, FTP Upload,
Garadget, Gardena, Global Cache IR, GlobalCache, GPIO, GPSTracker, GROHE ONDUS, HAI/Leviton Omni and
Lumina, HDanywhere, Heatmiser, Helios, HMS, Homematic, Horizon mediabox, HTTP, Hunter Douglas PowerView,
Hyperion, iCloud, IEC 62056-21 Meter, IHC / ELKO, innogy SmartHome, Insteon Hub, Insteon PLM, Intertechno, IPP,
IPX800, IRtrans, ISY, Jeelink, jointSPACE, Keba, KM200, KNX, Kodi, Kostal Inverter, Koubachi, LaMetric, LCN, Leap

Motion, LG TV, LG TV control using serial protocol, LG webOS, LIFX, LightwaveRF, LIRC, Log Reader, Logitech
Harmony Hub, Logitech Squeezebox, Loxone, Lutron, MailControl, MAX!, MAX!Cube, MAX!CUL, MCP23017,
MCP23017, MCP3424, Meteostick, Miele@home, Milight/Easybulb/Limitless, Minecraft, MiOS Bridge, Mochad X10,
Modbus, MPD, MQTT, Mystrom Eco Power, Neato, NEEO, NeoHub, Nest, Netatmo, Network, Network Health, Network
UPS Tools, Nibe Heatpump, NibeUplink, Niko Home Control, Nikobus, Novelan/Luxtronic Heat Pump, NTP, Oceanic,
OneBusAway, OneWire, OneWire GPIO, Onkyo, Open Energy Monitor, Open UV, OpenPaths, OpenSprinkler, Orvibo,
OwnTracks (formerly MQTTitude), OWServer, Panasonic TV, panStamp, Pentair Pool, PHC, Philips Hue, Picnet Sapp,
Piface, pilight, Pioneer AVR, PLCBus, PLCLogo, Plex, Plugwise, PowerDog Local API, Powermax, Primare, Pulseaudio,
Raspberry Pi RC Switch, RegoHeatPump, RFXCOM, RME, Robonect, Rotel Amplifier, Russound, RWE SmartHome,
Sager Weathercaster, Sallegra, Samsung Air Conditioner, Samsung TV, Satel Integra Alarm System, Seneye, senseBox, Serial,
Serial Button, Silvercrest Wifi Plug, SleepIQ , SMA Energy Meter, Smarthomatic, SNMP, Solar-Log, SolarEdge, Somfy
Tahoma, Somfy URTSI II, Sonance, Sonos, Souliss, Stiebel Eltron LWZ, Swegon Ventilation, Synop Analyzer, Systeminfo,
TACmi, tado, Tankerkönig, TCP & UDP, Tellstick, Tesla, TinkerForge, TiVo, Toon, TP-Link Smart Home, Tråderfri,
UCProjects.eu Relay Board, UPB, ValloxMV, Velbus, Velleman k8055 USB IO Board, Velux, Video Disk Recorder (VDR),
Vitotronic, WAGO, Wake-on-LAN, Weather, WeatherUnderground, WiFi LED, Windcentrale, Withings, WR3223
ventilation controller, Xiaomi Mi Smart Home, xPL, YahooWeather, Yamaha Receiver, Yeelight, Z-Way, Zibase, ZigBee,
Zoneminder, ZWave

The openHAB controller software is structured in five major building blocks, which together
connect, monitor and control every smart object of a smart building: These are: Things, Channels,
Bindings, Items and Sitemaps.

• Things are the smart objects under control such as home appliances, consumer electronics,
lighting, or window blinds. Anything which is connected to and controlled by the home
automation system. While often hardware based, Things can also be software entities such as
web-services, which provides air quality or weather information.

• Bindings are the software interfaces, which connect the openHAB controller software to the
various smart objects. Some bindings, when installed, are capable of automatically identifying
connected components they can interact with. Other bindings do not.

• Channels represent the functions of a device. For a light, which can change color, which can be
dimmed and which can be switched on and off, you will have three channels to control each
functionality. You can compare channels to TCP/IP ports . Each port reaches a different service
on a server. In openHAB each channel reaches a different functionality of a Thing.

• Items are the representation of the Things on the openHAB control panel, and the element with
which the user interacts. There are single items and group items, the later of which integrate
multiple single items.

• Sitemaps build the graphical control interface by arranging and grouping items.

10.1.1. openHAB Configuration
All configuration data in openHAB is stored in a JSON database. While an increasing amount of
configuration can be done using the graphical PaperUI, advanced configuration tasks such as
defining rules and the design of custom control interfaces require the use of text based
configuration files. (These files are parsed and end up in the same JASON database, however via
editing the text files you have full control over their content). I recommend to get some basic
functionality such as switching a light on and off working using the PaperUI, but then, before

implementing a larger project, use the text based configuration files, which we will describe in the
following chapters. With Homebuilder openHAB provides a tool, which allows to quickly generate
the text based configuration files .items and .sitemap for an entire infrastructure with floors, rooms,
lights, power plugs per room, heating, using a well thought out, structured nomenclature. All which
is left to do then is to configure the Things in the .things file and add the channel information in
the .item configuration file, which then connects the Items to the Things. What sounds cryptic if
you hear it for the first time, is actually a very structured approach you will appreciate, once you
have started working with it. Since the openHAB documentation provides configuration templates
for almost any device and function, typically you will just need to edit proven templates adapting
them to your local requirements.

Figure 10.1 shows the openHAB architecture and how Bindings, Things, Channels, Items and
Sitemaps interact with each other.

Figure 10.1 The openHAB architecture: Bindings, Things, Channels, Items and Sitemaps

10.2. openHAB Installation: macOS and Windows
As outlined above, openHAB is written in Java and requires a Java platform for operation. While it
also runs under Java 9 and 10, the officially recommended Java platform version is Java 8 revision
101 or higher. So as the first step download Java 8 from java.com or azul.com and install it on your
system. Then verify your installation on a Mac by opening a terminal window and typing

java -version

http://java.com
http://azul.com

Alternatively (on a Mac) go to System Preferences, where you will see a Java icon, the Java Control
Panel. If you select General and About, the Java version number of your installation is being
displayed.

Under Windows click the Start button and scroll through the applications and programs listed until
you see the Java folder. Click on the Java folder, then About Java to see the Java version number.

After installing Java 8 go to openhab.org, download openHAB 2.x and install it. Then start the
openHAB controller for the first time. On a Mac open the terminal window, navigate to the
openHAB folder and type ./start.sh. Under Windows execute C:\openHAB2\start.bat at
the command prompt. Wait until the openHAB controller has finished its startup sequence and you
can see the openhab prompt in the terminal window (Figure 10.2). While you will not interact with
openHAB using the terminal window on a daily basis, you should be aware of the following
commands:
<tab> for a list of available commands
<cmd> help for help on a specific command.
<ctrl-d> or type system:shutdown or logout to shutdown openHAB

Figure 10.2 Start of the openHAB controller

10.3. openHABian Installation: Raspberry Pi
The popular Raspberry Pi is probably the best all-round single-board computer platform available
today. Its 2019 edition 4 with a BCM2711B0 quad-core 1.5 GHz CPU, dual display support via
micro HDMI, Gigabit Ethernet and USB 3.0 has even reached a performance level, which allows
to use it as a basic desktop computer. For the purpose of a home controller, in which case it is used
as an embedded system with headless setup (no keyboard and monitor connected), also earlier
Raspberry Pi versions will provide the required computing and interface performance. While many
operating systems such as Ubuntu, Windows 10 IoT Core, or FreeBSD support Raspberry Pi, its
official operating system is Raspbian, a Debian-based Linux distribution. Operating system and
applications are stored on a MicroSD card, which is inserted into the according slot on the board.

http://openhab.org

Switching between two complete different setups therefore is as easy as swapping MicroSD cards.
MicroSD cards are used as boot medium due to their very low power consumption of only around
60 - 300 mW. If needed, you can also use external hard drives or SSDs, as long as the shared power
drain across all USB ports does not exceed 1.2 A (Pi 4 and Pi 3B+). Given the 5 V USB bus this
corresponds to a maximum power drain across all USB ports of 6 W. Since the power consumption
of a typical SSD lays in the range of 2 W to 4 Ws, it is advised to use an active USB hub for the
connection of larger storage devices. However, with large (up to 1 TB) and fast (designed for 4k
streaming) MicroSD cards available, in most cases a MicroSD card will be sufficient for all your
needs.

While you can also manually install Raspbian and openHAB on a Raspberry, it is more convenient
to download openHABian, an image which contains Raspbian Lite, openHAB and all necessary
tools in their newest version. Raspbian Lite is a scaled down, minimal version of the fully blown
Raspbian operating system without a graphical user interface. However since openHAB comes
with a web server, which provides the graphical openHAB GUI, as far as openHAB is concerned,
the openHAB GUI on a Raspberry looks exactly like the one on a Mac or a Windows computer.
And since in most cases you will run the openHAB Raspberry unit as dedicated home server, there
is no real need to add the fully blown desktop software onto it.

After downloading the openHABian image you use Etcher, which is available for macOS, Windows
and Linux, to flash it onto your MicroSD card. Now insert the card in your Raspberry Pi, connect
power and Ethernet and wait between 30 and 45 minutes for openHABian to finish its setup.
Entering the Raspberries domain name openhab in your browser allows you to you monitor the
installation progress, which largely depends on the performance of your Rasperry Pi model and the
throughput of your Internet connection (Figure 10.3).

Figure 10.3 Initial Startup of openHABian

Once the update and configuration process is complete, you connect to the openHAB GUI on your
Raspberry by entering

http://openhab:8080

https://github.com/openhab/openhabian/releases
https://www.balena.io/etcher/

in your browser. To restart openHAB and for other administrative tasks you will however also need
a terminal connection to openHABian. For that you open a terminal window and enter the
command

ssh openhabian@your.IP.address.here

The commands for the most common administrative tasks are listed with

openhab-cli —help

To start the built-in configuration tool enter

sudo openhabian-config

The actual configuration files are located in the directory /etc/openhab2/, however typically
you will mount the directory from your working computer (see section 10.4.1) rather than
manipulating files via a terminal connection.

10.4. First steps with openHAB
Now open a web browser and point it to http://localhost:8080. Then select DEMO. This
will install a demo smart home configuration, which will allow you to understand the functionality
of openHAB. This option also generates demo configuration text files, which can be used as
templates later(Figure 10.4).

Figure 10.4 Initial Startup of openHAB

You will now see the openHAB start screen with the four menu items Homebuilder, Basic UI,
Paper UI and HAB Panel. Now open Basic UI and Paper UI (right-click and open both links in
new tabs, so you can switch between the two and the start screen. The Basic UI displays the demo

sitemap, which is the control GUI of the demo configuration (Figure 10.5). Play around with the
GUI to get a first feeling on how a openHAB project looks like.

Figure 10.5 The openHAB demo sitemap

Now go to Paper UI, select Configuration and take a look at bindings – things and items. Click on
a Thing to see its Channels, then click on one of the Channels to see the associated Item. This gives
you a first feeling how Things, Channels and Items are linked together (10.6).

Figure 10.6 Things, Channels and Items in Paper UI

In Paper UI then select the Control menu. You will see a display of all Items, similar as in the Basic
UI, however not nicely grouped, and without chart information. Control is meant to be a simple,
basic GUI for Items, ignoring sitemap configurations or rules.

Before we get started with configuring our own openHAB project, we will do one more thing: we
will install the free Visual Studio Code (VS Code) editor, which provides dedicated openHAB
extensions. This will make it very easy for us to edit the text based openHAB configuration files. Go
to https://code.visualstudio.com/download, download the version for your operating system and
install it. Now open VS Code and select preferences – extensions. Then enter openhab. The
openhab extension will be listed and you can select and install it. Then configure the openHAB
settings for Visual Studio Code by selecting the VSC settings icon at the bottom left of the VSC
GUI and then Settings – Extensions – openHABConfiguration (Figure 10.7.1). In the Host section
select Edit in settings,json and enter

"openhab.host “your.IP.address.here"

or in case you work with openHABian on a Raspberry you can leave the default value

“openhab.host”: "openhabianpi"

In case you run openHAB on the same computer you are running VSC you simply enter
localhost (Figure 10.7.2). Figure 10.7.3 shows the VSC workspace configured for openHAB with
the integrated terminal window on the lower right side of the GUI.

Figure 10.7.1 Configuring the openHAB extensions in Visual Studio Code

https://code.visualstudio.com/download

Figure 10.7.2 Setting up the openHAB host address in Visual Studio Code

Figure 10.7.3 The Visual Studio Code workspace for openHAB with terminal window at the bottom

10.4.1.Setting permissions for openHABian configuration files
One important note on permission management for openHABian on Raspberry Pi . At installation
openHABian is installed with the two users openhabian and openhab:

• openhabian is the administrative user with access to the operating system. It has the default
password openhabian, which can be changed using the openHAB configuration tool (sudo
openhabian-config).

• openhab on the other hand is a user with no password and limited permissions. When openHAB
is running, it communicates with Linux as the user openhab.

Per default, as you can see below, the permissions for openHABian configuration files are set as
follows:

-rw-r--r-- 1 openhab openhab 242 Mar 1 20:16 demo.things

The owner of demo.things is openhab and has read and write access. The group openhab
(openhabian is part of the user group openhab as you can see using the command id openhab)
and also everybody else has read access only.

Thus, when you access openHABian from remote as the user openhabian, you need to change the
rights for all configuration files (xxx.things, xxx.sitemap, etc.) in order to be able to edit these files as
user openhabian. Otherwise you will receive the message Insufficient permission rights
when you try to save a configuration file, which you have opened and changed using VS Code.
With the following command you can add write access to the group openhab:

sudo chmod -v 664 demo.things

The resulting permission configuration is now

-rw-rw-r-- 1 openhab openhab 242 Mar 1 20:16 demo.things

and you can edit the file from remote as user openhabian.

10.4.2.Remote access to openHAB configuration files
Typically you will have openHAB installed on a dedicated, remote computer system, which is only
running openHAB. For this reason you will need to connect to the file system (mount the file
system) from your working computer. If you are using a Raspberry as your openHAB platform, the
openHABian image has already set up a network share, which directly can be mounted from your
local computer. On a Mac simply open Finder (Figure 10.8) and select

<Go><Connect to Server> here.your.IP.address

user: openhabian

password: openhabian

Figure 10.8 Mounting the openHABian share folder

The new device openHAB-share now provides access to the five openHAB folders openhab2-
addons, openhab2-conf, openhab2-logs openhab2-sys and openhab2-user data. In openhab2-conf
you will find the configuration files, which you can now edit using any editor such as Visual Studio
Code. When you change configuration files or add bindings openHAB will typically automatically
refresh the according configuration settings accordingly within a few seconds, which you can
follow by looking at the log file openhab.log. In rare cases, if the refresh does not work, you can
restart openHAB from with the following command:

sudo systemctl restart openhab2.service

10.4.3.Monitoring openHAB behavior: events.log and openhab.log
To monitor the behavior of openHAB and the impact of system changes you should always look at
the two default log files openhab.log and events.log when making changes. You can do this either by
selecting the openHAB LogViewer in the browser view (Figure 10.9), or from a terminal window by
entering the command

tail -f /var/log/openhab2/openhab.log -f /var/log/openhab2/
events.log

Figure 10.9 The openHAB Log Viewer in Browser View

10.5. First steps with openHAB
As mentioned above, we will configure openHAB using configuration text files. If you look into the
openHAB directory, you will find the folder conf with the subdirectories html, icons, items,
persistence, rules, scripts, services, sitemaps, sounds, things, and transform. To remove the demo
configuration create a demo subdirectory in each of the folders /items, /rules, /scripts, /

sitemaps, /rules, /persistence and /things, and move the demo configuration files (demo.things,
demo.items, etc.) in the according demo folder. This disables the demo configuration, but keeps the
files for later reference (Figure 10.10).

Figure 10.10 The openHAB configuration folder

Initially we will just deal with the two configuration files .items and .things. The configuration
information for bindings and things are contained in the .thing configuration file, the information
for channels and items in the .item configuration file. (This is why there is no .bindings and
no .channels file). In the course of this chapter we will in addition deal with the configuration
files .persistence, .rules and .sitemap, but for the moment we concentrate at getting first
functionality working.

We create two empty text files (or rename copies of the demo files) called smarthome.items and
smarthome.things in the folders /items and /things. (If you work on a Raspbian Pi make sure
to set the right permissions for the files as described above in the openHABian section). In general
you can have multiple or single .items and .things files, depending on the complexity of a project.
Most of the time you will just need to modify configuration templates, which is why configuring
openHAB using text files is much easier, than you think by now. Very quickly you will realize, that
this approach is much faster, especially when you need to enter more than a few components. You
will then just copy text lines and modify a few entries, which is much more efficient then
sequentially clicking through multiple GUIs again and again.

As the first step we will configure a few bindings, which we will use for our project. Since bindings
are add on software interface modules, you need to reboot openHAB after specifying the bindings
you need. The more than 250 bindings for openHAB come with the standard installation, so you
do not need to worry about downloading bindings. You just need to specify the bindings openHAB
shall load during startup by editing the configuration file /services/addons.cfg. With the VS Code
file explorer go to conf – services and open addons.cfg. Uncomment the binding entry and add the
string

astro,hue,ipp,knx,zwave,ntp,openweathermap,kodi,denonmarantz

to the line where the bindings are configured. (Figure 10.11):

#legacy = true

A comma-separated list of bindings to install (e.g. "binding =

sonos,knx,zwave")

binding =

astro,hue,ipp,knx,zwave,ntp,astro,openweathermap,kodi,denonmarantz

Figure 10.11 Configuring bindings in /services/addons.cfg

Then save the changes in VS Code and shutdown the openHAB server by entering logout in the
terminal window and then restarting it again. On a Raspbian Pi to restart enter

sudo systemctl restart openhab2.service

Now open the PaperUI and go to Configuration and Bindings. You should see a display of the
bindings you added in the addons.cfg file (Figure 10.12).

Figure 10.12 Configuring bindings in /services/addons.cfg

As the first component for our project we will add the astronomical data for sun and moon from the
Astro binding. Simply add the .things and .items templates from the Astro binding documentation
(https://www.openhab.org/addons/bindings/astro/) to the configuration files smarthome.things
and smarthome.items. Retrieve the geolocation coordinates for your location using google maps
(enter your address, right click on the location marker and select Whats here?). Enter the data in the
configuration file, latitude first, then longitude, the altitude value is optional.

smarthome.things:

astro:sun:home [geolocation="52.5200066,13.4049540", interval=60]

astro:moon:home [geolocation="52.5200066,13.4049540", interval=60]

smarthome.items:

https://www.openhab.org/addons/bindings/astro/

Number Sun_Elevation "Sun Elevation" <sun>

{ channel = "astro:sun:home:position#elevation" }

Number Sun_Azimuth "Sun Azimuth" <sun>

{ channel = "astro:sun:home:position#azimuth" }

DateTime Sunrise_Time "Sunrise [%1$tH:%1$tM]"

<sunrise> { channel = "astro:sun:home:rise#start" }

DateTime Sunset_Time "Sunset [%1$tH:%1$tM]" <sunset>

{ channel = "astro:sun:home:set#start" }

Number Moon_Elevation "Moon Elevation" <moon>

{ channel = "astro:moon:home:position#elevation" }

Number Moon_Azimuth "Moon Azimuth" <moon>

{ channel = "astro:moon:home:position#azimuth" }

String Moon_Phase "Moon Phase" <moon>

{ channel = "astro:moon:home:phase#name" }

After saving the changes, the display of the Paper UI should now look like the following (Figure
10.13):

Figure 10.13 Display of Astro items in the Paper UI

Next we will add the display of outside temperature and weather. For this we will use the
OpenWeatherMap binding, which we have already installed in our previous step. As a weather

service provider we will use openweathermap.org. In order to use their free service we go to their
website, register and retrieve an API key. In addition we need the geographic coordinates of he
weather station, for which we want to receive weather data. For this we simply go to

https://openweathermap.org/find?q=

and enter the desired city name to receive the according coordinates. With these data we can insert
the openweathermap bridge code in smarthome.things definition file:

Bridge openweathermap:weather-api:api "OpenWeatherMap

Account" [apikey="AAA", refreshInterval=30, language="de"] {

 Thing weather-and-forecast local "Local Weather And

Forecast" [location=“latitude,longitude”, forecastHours=0,

forecastDays=7]

 Thing weather-and-forecast miami "Weather And Forecast In

Miami" [location="25.782403,-80.264563", forecastHours=24,

forecastDays=0]

}

Next we add the following item configurations to our smarthome.items file, which creates the items
berlinCurrentTemperature and berlinStationName:

Number:Temperature berlinCurrentTemperature "Current temperature [%.1f

%unit%]" <temperature> { channel="openweathermap:weather-and-

forecast:api:berlin:current#temperature" }

String berlinStationName "Name [%s]" { channel="openweathermap:weather-

and-forecast:api:berlin:station#name" }

And finally we add the display configuration for our smarthome.sitemap configuration file, which
displays Temperature, Humidity along with the according openHAB icons.

Frame label="Weather"

{

Text item=wykStationName label="Station"

Text item=wykCurrentTemperature label="Temperature"

}

Now, a few seconds after saving our changes we should be able to see the below OpenWeatherMap
entries in the Paper UI view (Figures 10.15, 10.16).

https://openweathermap.org/find?q=

Figure 10.14 OpenWeatherMap Thing in openHAB PaperUI

Figure 10.15 OpenWeatherMap Binding in openHAB PaperUI

Figure 10.16 OpenWeatherMap Control GUI display in the Paper UI

10.6. Items
Before we continue with our project a few words on the syntax of items. There are thirteen types of
items, each representing a specific type of information they can store, display and act upon (Table
10.1). With items of the type Group you can build hierarchical items structures (See below). Items
of the type Number are used for dimensions such as temperature or speed (Table 10.2). This allows
for identifying matching channels and for providing default measurement units. The placeholder
%unit% is used to configure the format of the measurement unit. The number value itself can be
formatted using the java formatter class syntax. The nomenclature is to use square brackets, a

leading % and the according Java formatting syntax. As an example, using the formatting character
f (floating point) the expression

"Outside Temperature [%.2f °C]"

displays the item label Outside Temperature with the temperature value in °C with two decimal
places. In most cases there are openHAB templates with meaningful formatting available, so for
most standard situations you can simply go with the formatting proposed in the template.

In general items are defined using the following syntax:

itemtype itemname "labeltext [stateformat]" <iconname> (group1,

group2, ...) ["tag1", "tag2", ...] {channel definition}

The first field itemtype specifies one of the thirteen item types (Table 10.2), the field itemname
contains the name for the item, which needs to be unique across the entire project. Since building
automation projects typically contain large numbers of items, the usage of a systematic,
hierarchical naming convention is essential. openHAB recommends a naming convention using a
combination of underscores and camel case such as: Livingroom_CeilingLight_Color. Frequent
names such as ground floor, first floor, bathroom or living room can be abbreviated to GR, FF, LR
or BR. As we will see in the next chapter, using the openHAB Homebuilder tool you will be able to
automatically generate the configuration text files for .sitemap and .items for you entire
infrastructure using this proposed naming convention.

The field labeltext contains the textual description, which the item will display on the sitemap GUI.
Along with the textual description this field also allows to specify the format of the measurement
value (see above) as well as the state of the connected device in square brackets.

The field iconname defines the icon, which shall be used for displaying the item on the sitemap
GUI. openHAB comes with more than 100 predefined icons. Simply look up the name of the item
you would like to use at https://www.openhab.org/docs/configuration/iconsets/classic/#icons
and insert it in the icon name field. If you want to use your own icon, just copy the according .png
files into /openHAB-share/openhab2-conf/icons/classic.

The group field contains one or multiple item groups an item is part of. Similar to the hierarchical
item naming convention, items themselves can and should be organized in groups. Item groups
themselves can also be part of other item groups. The below example shows the definition of the
group item Home, which is being displayed using the icon house and the label text Smarthome.
The group item Bathroom is being displayed via the text Bathroom and the icon bath, while being
part of the item group Home:

Group Home "Smarthome" <house>

Group Bathroom "Bathroom" <bath>

(Home)

https://www.openhab.org/docs/configuration/iconsets/classic/#icons

The Tag field allows to further characterize an item beyond its Type. The final field in curly
brackets is the important channel field. It contains the channel definition, which links the item to a
Thing. Below for reference again the item definition used to display the current temperature from
before, which we now better understand. The item is of type Number with item name
Temperature_OWM, the item label is Temperature and the temperature unit is displayed with one
decimal place. In curly brackets we have the channel definition.

Number Temperature_OWM "Temperature [%.1f
°C]" {weather="locationId=home, type=temperature, property=current"}

Besides item Type and Name all fields of an item are optional. Therefore items can be defined and
displayed in a sitemap without a link to a Thing. This also means that you can focus on defining the
layout of a project using .sitemap and .item configuration files and add the configuration for Things
and the channels definition in the .items file later.

Item Type Description Command Types

Color Color information (RGB) OnOff, IncreaseDecrease, Percent,
HSB

Contact Item storing status of e.g. door/window contacts OpenClose

DateTime Stores date and time -

Dimmer Item carrying a percentage value for dimmers OnOff, IncreaseDecrease, Percent

Group Item to nest other Items / collect them in Groups -

Image Holds the binary data of an image -

Location Stores GPS coordinates Point

Number Stores values in number format, takes an optional
dimension suffix Decimal

Number:<dimensi
on>

like Number, additional dimension information for
unit support Quantity

Player Allows to control players (e.g. audio players) PlayPause, NextPrevious,
RewindFastforward

Rollershutter Typically used for blinds UpDown, StopMove, Percent

String Stores texts String

Switch Typically used for lights (on/off) OnOff

Table 10.1 Item types

Dimension default unit metric default unit imperial

Length Meter (m) Inch (in)

Temperature Celsius (°C) Fahrenheit (°F)

Pressure Hectopascal (hPa) Inch of mercury (inHg)

Speed Kilometers per hour (km/h) Miles per hour (mph)

Intensity Irradiance (W/m2) Irradiance (W/m2)

Dimensionless Abstract unit one (one) Abstract unit one (one)

10.7. Where are You? Presence Detection with openHAB
Before we move on we will add another important software module to our project, the so called
network binding. This software add-on identifies all networked devices on the local network and
turns them into Things, which can be used as triggers for rules. Among other things we will then be
able to trigger on smartphones connected to local Wi-Fi network. This will allow us to use our Wi-
Fi home network itself as a sensor for presence detection. Compared to traditional motion and light
detector based presence monitoring, this approach has the advantage that it detects not only that
someone is present, but also who it is.

One important condition for our presence detection to function is, that all tracked devices are
always assigned the same IP address when they come online. Most routers do this automatically
and only assign a new IP address to a device, if the maximum number of IP addresses in the
network has been reached. However, to ensure this is always the case you can configure devices with
a DHCP priority to ensure, they always appear under the same IP address.

To install the network binding we open the file /services/addons.cfg. and add network to the list
of bindings we have installed so far. Then we configure the binding by creating the file network.cfg
in the directory /services/ with the following content:

binding.network:allowSystemPings=true

binding.network:allowDHCPlisten=false

binding.network:arpPingToolPath=arping

binding.network:cacheDeviceStateTimeInMS=2000

(If you want to use arping, which in addition to system pings and the DHCP listen function allows
you to ping MAC addresses, you need to install the arping tool in the openHAb directory: http://
www.habets.pp.se/synscan/programs.php?prog=arping)

Then we restart openHAB. Acording to the template of the network binding we now add the
following lines to our .things and .items files:

Thing network:pingdevice:ChristophersiPhone

[hostname="192.168.178.31"]

Switch Christophers_iPhone

{ channel="network:pingdevice:Christophers_iPhone:online" }

DateTime LastSeen_Christopher

{ channel="network:pingdevice:Christophers_iPhone:lastseen" }

Angle Degree (°) Degree (°)

Table 10.2 The dimensions of the item type Number

http://www.habets.pp.se/synscan/programs.php?prog=arping
http://www.habets.pp.se/synscan/programs.php?prog=arping

In our .sitemap file we add the new frame Presence Detection with the text item
Christophers_iPhone:

 Frame label="Presence Detection"

 {

 Text label="Presence Detection" icon="motion" {

 Text item=Christophers_iPhone icon="boy_1" label="Christophers

iPhone [%s]"

 Text item=LastSeen_Christopher icon="time" label="Christopher

LastSeen [%1$tH:%1$tM]"

 Text item=Othmars_iPhone icon="man_1" label="Othmars iPhone

[%s]"

 }

 }

In our control centre we now can see if Christophers iPhone is connected to our home network
(Figure 10.17).

Figure 10.17 GUI for Presence Detection using the openHAB network binding

10.8. openHAB’s Memory and Intelligence: Persistence & Rules
One crucial functionality of a building automation systems is its ability to store values. This is
needed for creating charts, for data analysis, for rules which require historic values and for
reloading of values in case of a system restart. In openHAB this functionality is called Persistence.
To implement data persistence for openHAB you have the choice among a number of add-ons. For
our project we will use the round-robin database RRD4j. The advantage of a round-robin database
is, that it does not grow in size. It has a fixed allocated size. Once this size is reached, the oldest

values are overwritten by the newest ones. If you have selected DEMO after the first openHAB
start and you are working with the demo configuration, the RRD4j add-on is already installed, and
you do not need to follow the below installation instruction. Otherwise open Paper UI, go to Add-
ons, select the Persistance pane, scroll down to the RRD4j persistence entry, then select and install
it. (Persistence add-ons need to be installed using the Paper UI.) Now go to Configuration – System
and scroll down to the Persistence section. Select the only option, which should now be RRD4j.
Now for all persistence operations per default the RRD4j database is being used. In /conf/services
you will now see a new text file called rrd4j.cfg, which is being used to configure the database. For
the time being we go with the default values of the database. For the item- and event-related
persistence configuration the file persistence/rrd4j.persist is used.

To understand the usage of persistence and rules, we will enhance the display of our
OpenWeatherMap data with daily minimum and maximum temperatures and with a temperature
chart. The chart will display the temperature data on hourly, daily and weekly basis. For the
calculation of the daily minimum and maximum temperatures in addition to the persistence data
we will create simple rules, which will be stored in the file smarthome.rules, where all rules reside.
In addition to smarthome.things, which we do not need to touch at this point, we will then have the
following five files

rrd4j.persist

smarthome.rules

smarthome.items and

smarthome.sitemap

Restricting our project at this point to the display of weather and astronomical data keeps the
complexity of the configuration files low, while demonstrating the essential functionalities you will
need during your project. Below the content for the four files is listed. When you copy the content
in the according configuration files, you will get a display in Basic UI as shown in figure 10.20.

As you can see, the items Weather_Temp_Max, Weather_Temp_Min and Weather_LastUpdate in
smarthome.items do not have channels assigned. Their values are provided by the rules "Set daily
max and min temperature“ and "Records last weather update time“ in smarthome.rules. The
persistence configuration in rrd4j.persist records the data of all items within the item group
Weather_Chart and all items with an icon name starting with Temperature. We now understand
how to retrieve, process and display data with openHAB and can move on to add new data sources
to our project in the next chapter.

rrd4j.persist

Strategies {

 everyMinute : "0 * * * * ?"

}

Items {

// let's only store temperature values in rrd

 Temperature*, Weather_Chart* : strategy = everyMinute,

restoreOnStartup

}

smarthome.rules

// Sets max and min temperatures for the day

rule "Set daily max and min temperature"

when

 Item Weather_Temperature changed or

 Time cron "0 0 0 * * ?" or

 System started

then

 val max = Weather_Temperature.maximumSince(now.withTimeAtStartOfDay)

 val min = Weather_Temperature.minimumSince(now.withTimeAtStartOfDay)

 if (max !== null && min !== null) {

 postUpdate(Weather_Temp_Max, max.state)

 postUpdate(Weather_Temp_Min, min.state)

 }

end

// Creates an item that stores the last update time of this item

rule "Records last weather update time"

when

 Item Weather_Temperature received update

then

 postUpdate(Weather_LastUpdate, new DateTimeType())

end

smarthome.items

Group Weather_Chart

Number:Temperature Weather_Temperature "Temperature [%.1f °C]"

<temperature> (Weather, Weather_Chart)

{ channel="openweathermap:weather-and-

forecast:api:wyk:current#temperature" }

Number Weather_Temp_Max "Todays Maximum [%.1f °C]"

<temperature> (Weather, Weather_Chart)

Number Weather_Temp_Min "Todays Minimum [%.1f °C]"

<temperature> (Weather, Weather_Chart)

Number Weather_Chart_Period "Chart Period"

DateTime Weather_LastUpdate "Last Update [%1$ta %1$tR]" <clock>

Number Sun_Elevation "Sun Elevation" <sun>

{ channel = "astro:sun:home:position#elevation" }

Number Sun_Azimuth "Sun Azimuth" <sun>

{ channel = "astro:sun:home:position#azimuth" }

DateTime Sunrise_Time "Sunrise [%1$tH:%1$tM]"

<sunrise> { channel = "astro:sun:home:rise#start" }

DateTime Sunset_Time "Sunset [%1$tH:%1$tM]" <sunset>

{ channel = "astro:sun:home:set#start" }

Number Moon_Elevation "Moon Elevation" <moon>

{ channel = "astro:moon:home:position#elevation" }

Number Moon_Azimuth "Moon Azimuth" <moon>

{ channel = "astro:moon:home:position#azimuth" }

String Moon_Phase "Moon Phase" <moon>

{ channel = "astro:moon:home:phase#name" }

smarthome.sitemap

sitemap smarthome label="Main Menu Smarthome"

{

 Frame label="Weather"

 {

 Text item=Weather_Temperature

valuecolor=[Weather_LastUpdate=="NULL"="lightgray",Weather_LastUpdate>90

="lightgray",>25="orange",>15="green",>5="orange",<=5="blue"]

 {

 Frame

 {

 Text item=Weather_Temp_Max

valuecolor=[>25="orange",>15="green",>5="orange",<=5="blue"]

 Text item=Weather_Temp_Min

valuecolor=[>25="orange",>15="green",>5="orange",<=5="blue"]

 Text item=Weather_LastUpdate

visibility=[Weather_LastUpdate>30]

valuecolor=[Weather_LastUpdate>120="orange",

Weather_LastUpdate>300="red"]

 }

 Frame

 {

 Switch item=Weather_Chart_Period label="Chart Period"

icon="chart" mappings=[0="Hour", 1="Day", 2="Week"]

 Chart item=Weather_Chart period=h refresh=600000

visibility=[Weather_Chart_Period==0, Weather_Chart_Period=="NULL"]

 Chart item=Weather_Chart period=D refresh=3600000

visibility=[Weather_Chart_Period==1]

 Chart item=Weather_Chart period=W refresh=3600000

visibility=[Weather_Chart_Period==2]

 }

 }

 Text label="Astronomical Data" icon="sun"

 {

 Text item=Sun_Elevation

 Text item=Sun_Azimuth

 Text item=Sunrise_Time

 Text item=Sunset_Time

 Text item=Moon_Elevation

 Text item=Moon_Azimuth

 Text item=Moon_Phase

 }

 }

}

Figure 10.18 The main menu for weather and astronomical data in the BasicUI

Figure 10.19 Display of processed weather data in BasicUI

Figure 10.20 Display of astronomical data in BasicUI

Figure 10.21 Smartphone display of openHAB weather data

10.9. OpenHAB Upgrades
UnderMacOS and Linux updates can simply be initiated with the command update in the
runtime directory:

sudo runtime/bin/update

For Windows an update guide can be found here.

10.10.OpenHAB Backup
Once your system has reached a stable state, you should start to create backups, so you always
have a working fallback solution available. The backup and restore command files are located in

https://www.openhab.org/docs/installation/windows.html#updating-the-openhab-runtime

the directory /usr/share/openhab2/runtime/bin/. With the following commands you can
initiate a backup and a restore of your openHAB installation:

cd /usr/share/openhab2/runtime/bin

sudo ./backup yourbackupfilename

sudo ./restore yourbackupfilename.zip

10.11.Migration from openHAB to openHABian
When migrating an openHAB installation from one platform to another (e.g. a PC/Mac based
openHAB installation to Raspberry Pi based openHABian) it is advised to start with a clean, new
openHAB respective openHABian installation and manually copy the configuration files (*.things,
*.sitemaps, etc.) to the according directories. When using a backup-file from an old hardware
configuration and restore it on a new one, you might run into problems with some configuration
leftovers of your old system interfering with the new one. So the best practice is to start with a fresh
install, select demo-configuration, which auto installs persistence, and then manually copy the
configuration files to the fresh install.

	Disclaimer
	About the Author
	Read Me
	Who is this Book for?
	What You Will NOT Find
	What You WILL Find
	Safety First!
	Take no Risks
	Formatting Rules

	The Big Picture
	Smart Buildings and the Internet of Things (IoT)
	The Potential for Energy Conservation
	Safety Management and Assistive Domotics
	Changing the World (a bit) to the Better
	Bibliography

	Key Concepts
	Devices under Control
	Sensors and Actuators
	Home Automation Network (HAN)
	Controller (Smart Hubs)
	Remote Control Devices
	Cloud Services
	Bibliography

	Home Automation Network Protocols
	Network Address Translation (NAT)
	Open Ports and Port Forwarding (Port Sharing)
	UPnP
	Dynamic DNS
	HTTP REST
	HTTP Server Push
	Bibliography

	You Don’t Know What You Don’t Know - Smarthome Security
	Attacking the HAN
	IoT Search Engines - Shodan and friends
	Bibliography

	Home & Building Automation: Markets and Trends
	Market Size and Growth
	Smart Devices & Deep Learning Technologies
	Bibliography

	Smart Homes for the Masses: Google, Apple, Samsung, Amazon and more …
	Google’s Nest Labs and Google Home
	One More Thing … Apple HomeKit
	Samsung’s SmartThings
	Amazon’s Echo

	To Cloud or not to Cloud - This is the Question
	The Project
	Overview
	Equipment and Prerequisites

	The Smart Home Control Center openHAB
	openHAB Overview
	openHAB Installation: macOS and Windows
	openHABian Installation: Raspberry Pi
	First steps with openHAB
	First steps with openHAB
	Items
	Where are You? Presence Detection with openHAB
	openHAB’s Memory and Intelligence: Persistence & Rules
	OpenHAB Upgrades
	OpenHAB Backup
	Migration from openHAB to openHABian

	openHAB GUI Design
	Homebuilder

	Integration of Multimedia
	Setting up Kodi
	Integrating Kodi with openHAB
	Controlling HiFi Components: DenonMarantz
	Creating Command Sequences (Scenes)

	A Little AI: openHAB Rules
	Testing it Right - Best Practice for Script Writing
	Pretty smart: A weather based alarm
	A final rule with fixed timing

	More iDevices
	Device Control Using Z-Wave
	Device Control Using KNX
	Configuring a KNX Heating Control System
	Bibliography

	Remote Smarthome Control
	Troubleshooting and Testing
	Troubleshooting openHAB
	Preventive Maintenance

	Appendix: Industry Grade Home Infrastructure Control: KNX
	What is KNX?
	How does KNX Work?
	The KNX Software Infrastructure: ETS
	ETS on a Mac
	ETS5 Installation
	Importing Vendor Catalogs
	ETS5 Infrastructure Configuration
	ETS5: Adding the Building Infrastructure
	ETS5: Configuring the KNX Elements
	ETS5: Connecting Infrastructure to Controls
	Notes on Configuring KNX Devices

	Bibliography

